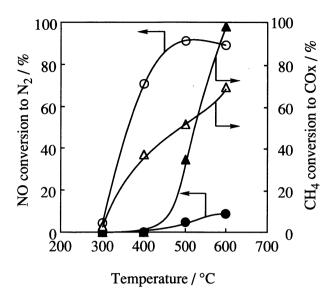
Selective Reduction of Nitrogen Monoxide with Methane or Ethane on Gallium Ion-exchanged ZSM-5 in Oxygen-rich Atmosphere

Katsunori YOGO, Michito IHARA, Ikue TERASAKI, and Eiichi KIKUCHI*

Department of Applied Chemistry, School of Science and Engineering,


Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169

Selective reduction of nitric oxide with methane or ethane in the presence of excess oxygen was investigated using a gallium ion-exchanged ZSM-5 zeolite catalyst(Ga-ZSM-5). Ga-ZSM-5 was highly active and selective for NO reduction above 400 °C. The limiting molar ratios of reacted NO to consumed carbon in C_2H_6 and CH_4 at 500 °C were found to be 1.5 and 2, respectively.

The reduction of nitrogen oxides(NOx) to molecular nitrogen is an important task for environmental chemistry. A new type of catalytic reduction of NO with hydrocarbons has been reported using various cation-exchanged zeolites, 1 - 4) metallosilicates, 5, 6) Al₂O₃, 7, 8) and SiO₂-Al₂O₃.9) It was shown in our previous work 10) that gallium ion-exchanged zeolites were active, and were most selective for reduction of NO with C₃H₈ among these catalysts.

It has been reported by Iwamoto and co-workers¹¹) that NO was reduced by C₂ or higher olefins and that H₂ and CO were ineffective for this reaction on Cu-ZSM-5. Hamada et al.¹²) have studied the catalytic activity of Al₂O₃ for reduction of NO with various hydrocarbons. They reported that NO was hardly reduced when CH₄ and benzene were used as reductants. Therefore, it has been considered that CH₄ and C₂H₆ are rather inactive for reduction of NO.

In this study, we have found that Ga-ZSM-5 shows high catalytic activity and extremely high selectivity for reduction of NO with CH₄ or C₂H₆. It was also found that the molar ratios of reacted NO to consumed carbon in CH₄ and C₂H₆ were 2 and 1.5, respectively.

100 100 NO conversion to N₂ / % 80 80 60 60 40 40 20 200 300 700 400 500 600 Temperature / °C

Fig.1. Variation in NO conversion and CH_4 conversion on Ga-ZSM-5(open symbol) and Al_2O_3 (solid symbol) as a function of reaction temperature.

- \circ NO conversion to N_2 ;
- \triangle \blacktriangle , CH₄ conversion to COx.

NO, 1000 ppm; CH₄, 1000 ppm; O₂, 10%; total flow rate, 100 cm³ min⁻¹; catalyst weight, 0.5 g.

Fig.2. Variation in NO conversion and C_2H_6 conversion on Ga-ZSM-5 as a function of reaction temperature.

O, NO conversion to N_2 ;

 Δ , C₂H₆ conversion to COx.

NO, 1000 ppm; C_2H_6 , 1000 ppm; O_2 , 10%; total flow rate, 100 cm³ min⁻¹; catalyst weight, 0.5 g.

Na form ZSM-5 having a molar SiO₂/Al₂O₃ ratio of 23.3 was supplied by Tosoh Corporation. Gallium ion-exchanged ZSM-5(Ga-ZSM-5(92)) was prepared by ion-exchange of ammonium form ZSM-5 using an aqueous solution of Ga(NO₃)₃·9H₂O at 95 °C for 24 h, followed by calcination at 500 °C. The solution was adjusted to give a concentration of gallium cations equal to one third of Al(100% ion-exchange level as Ga³⁺). The value in parenthesis represents the level of gallium exchange. Alumina, as a reference catalyst, was obtained from Catalysts & Chemical Ind. Co.

Measurements of catalytic activity were conducted by use of a fixed-bed flow reactor. A mixture of 1000 ppm NO, 10% O₂, 150 - 1000 ppm CH₄ or C₂H₆ was fed on to 0.5 g catalyst at a rate of 100 cm³(STP)·min⁻¹. After reaching steady-state, effluent gases were analyzed by means of gas chromatography and chemiluminescence detection of NO and NO₂. The catalytic activity was evaluated by the level of NO conversion to N₂.

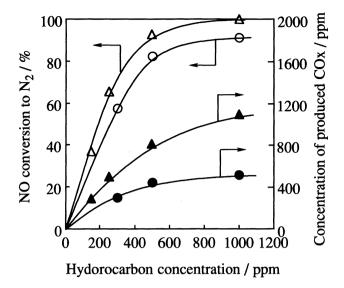


Fig.3. Variation in NO conversion(open symbol) and concentration of produced COx(solid symbol) of Ga-ZSM-5 as a function of hydorocarbon concentration.

Hydorocarbons: $CH_4(O, \bullet)$; $C_2H_6(\Delta, \blacktriangle)$. NO, 1000 ppm; O2, 10%; total flow rate, 100 cm³·min⁻¹; catalyst weight, 0.5 g. Reaction temperature, 500 °C.

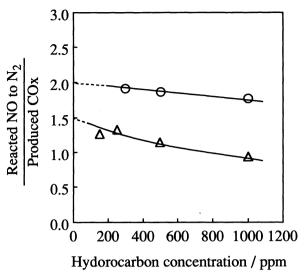


Fig.4. Ratio of reacted NO to produced COx on Ga-ZSM-5. Hydrocarbons: O, CH₄; Δ , C₂H₆. NO, 1000 ppm; O₂, 10%; total flow rate, $100 \text{ cm}^3 \cdot \text{min}^{-1}$; catalyst weight, 0.5 g. Reaction temperature, 500 °C.

Figure 1 shows the temperature dependence of the catalytic activity of Ga-ZSM-5 for NO reduction with CH₄ in comparison with Al₂O₃. NO was hardly reduced to N₂ at 300 °C on Ga-ZSM-5. The level of NO conversion, however, increased with increasing reaction temperature, and finally 90% NO was reduced above 500 °C. Hamada and co-workers reported¹²) that reduction of NO with CH₄ slightly proceeded on Al₂O₃ catalyst only when reaction temperature was higher than 500 °C. As shown in this figure, the catalytic activity of Al₂O₃ was extremely low compared with that of Ga-ZSM-5. On Al₂O₃ catalyst, CH₄ was mainly consumed by reaction with O₂, resulting in the low level of NO conversion. In contrast, NO was selectively reduced to N₂ on Ga-ZSM-5.

The results of reduction of NO with C_2H_6 on Ga-ZSM-5 were shown in Fig.2. The levels of NO conversion with C_2H_6 were comparable or a little higher than those with CH₄ on this catalyst.

Figure 3 shows the effect of hydrocarbon concentration on the catalytic activity of Ga-ZSM-5 at 500 °C. NO conversion increased with increasing concentration of CH₄ and C₂H₆.

It should be noted that Ga-ZSM-5 showed high catalytic activity for reduction of NO even in the presence of small amounts of CH₄ and C₂H₆. It was shown in our previous work¹³) that gallium ion-exchanged zeolites showed high activity and selectivity for the reduction of NO with C₃H₈, and that the limiting molar ratio of reacted NO to produced COx was near unity.

Figure 4 shows the relationship between the molar ratio of reacted NO to produced COx and the concentration of reductants. The limiting molar ratio of reacted NO to consumed carbon in C₂H₆ and CH₄ was 1.5, and 2, respectively. These ratios were almost independent of the concentration of hydrocarbons. Reduction of NO with CH₄ and C₂H₆ proceeded predominantly on Ga-ZSM-5, and CH₄ and C₂H₆ were hardly consumed by the reaction with O₂.

We conclude from these results that reduction of NO proceeds on Ga-ZSM-5 even when CH₄ and C₂H₆ are used as reductants, and CH₄ was an effective reductant for selective reduction of NO.

References

- 1)S.Sato, Y. Yu-u, H.Yahiro, N.Mizuno, and M.Iwamato, Appl. Catal., 70, L1 (1991).
- 2)H. Hamada, Y. Kintaichi, M. Sasaki, and T. Itoh, Appl. Catal., 64, L1 (1990).
- 3)S.Sato, H. Hirabayashi, H.Yahiro, N.Mizuno, and M.Iwamato, Catal. Lett., 12, 193 (1992).
- 4)M. Misono, and K. Kondo, Chem. Lett., 1991, 1001.
- 5)E. Kikuchi, K. Yogo, S. Tanaka, and M. Abe, Chem. Lett., 1991, 1063.
- 6)T. Inui, S.Iwamoto, S. Kojo, and T. Yoshida, Catal. Lett., 13, 87 (1992).
- 7)Y. Kintaichi, H. Hamada, M. Tabata, M. Sasaki, and T. Ito, Catal. Lett., 6, 239,(1990).
- 8)Y. Torikai, H.Yahiro, N.Mizuno, and M.Iwamato, Catal. Lett., 9, 91 (1992).
- 9)H. Hosose, H.Yahiro, N.Mizuno, and M.Iwamato, Chem. Lett., 1991, 1859.
- 10)K. Yogo, S. Tanaka, M. Ihara, T. Hishiki, and E. Kikuchi, Chem. Lett., 1992, 1025.
- 11)M. Iwamoto, H. Yahiro, Y. Yu-u, S. Shundo, and N. Mizuno, Shokubai, 32, 430 (1990).
- 12)H. Hamada, Y. Kintaichi, M. Tabata, M. Sasaki, and T. Itoh, Shokubai, 33, 59 (1991).
- 13)K.Yogo, M.Ihara, I. Terasaki, and E.Kikuchi, Catal. Lett., submitted for publication.

(Received October 7, 1992)